نیروگاه هسته ای چیست

 

What is the nuclear power plant

برای شما عزیزان قراره در مورد نیروگاه هسته ای صحبت کنیم، نیروگاهی که نوع خودش بسیار بحث داره؛ از وضعیت خاصش گرفته که نمی توان بدون تمهیدات خاصی ساختمان این نیروگاه را بنا کرد تا قابل حمل بودن آن!

قبل تر نیز به بررسی کامل نیروگاه سیکل ترکیبی و نیروگاه انبساطی پرداختیم که توصیه می کنیم این دو نیرگاه را نیز مطالعه بفرمایید

نیروگاه هسته ای

امروزه حدود 440 نیروگاه هسته‌ای در 31 کشور جهان برق تولید می‌کنند. که سهم فرانسه با تولیدبیش از 75 % درصد انرژی الکتریکی خود از این طریق از سایرین  بیشتر بوده است.

تمامی نیروگاه‌های گرمایی متداول از نوعی سوخت برای تولید گرما استفاده می‌کنند. برای مثال گاز طبیعی، زغال سنگ یا نفت. در یک نیروگاه هسته‌ای این گرما از شکافت هسته‌ای که در داخل راکتور صورت می‌گیرد تامین می‌شود. در این فرآیند تعدادی نوترون و مقدار نسبتاً زیادی انرژی آزاد می‌شود.

نیروگاه هسته‌ای به تأسیساتی صنعتی و نیروگاهی می‌گویند که بر پایهٔ فناوری هسته‌ای و با کنترل فرایند شکافت هسته‌ای، از گرمای تولید شدهٔ آن اقدام به تولید انرژی الکتریکی می‌کند. کنترل انرژی هسته‌ای با حفظ تعادل در فرایند شکافت هسته‌ای همراه است که با استفاده از گرمای تولیدی برای تولید بخار آب (مانند بیشتر نیروگاه‌های گرمایی) اقدام به چرخاندن توربین‌های بخار و به دنبال آن ژنراتورها می‌کند.

در سال ۲۰۰۴ انرژی هسته‌ای در تولید کل انرژی مصرفی جهان سهمی در حدود ۶٫۵٪، و در تولید انرژی الکتریکی سهمی در حدود ۱۵٫۷٪ داشته‌است و نخستین بار به وسیله انریکو فرمی در سال ۱۹۳۴ در یکی از آزمایشگاه‌های دانشگاه شیکاگو تولید شد. این اتفاق زمانی رخ داد که تیم او مشغول بمباران کردن هسته اورانیوم با نوترون بودند.

بنا بر پیش‌بینی اتحادیه جهانی هسته‌ای در سال ۲۰۱۵ به طور میانگین هر ۵ روز یک‌بار یک نیروگاه هسته‌ای در جهان آغاز به کار می کند. شکافت هسته‌ای صورت گرفته در یک رآکتور فقط بخشی از یک چرخه هسته‌ای است. این چرخه از معادن شروع می‌شود.میزان اورانیوم موجود در پوسته زمین نسبتاً زیاد است به طوری که با منابع فلزاتی همچون قلع و ژرمانیوم برابری می‌کند و تقریباً ۳۵ برابر میزان نقره موجود در پوسته زمین است. اورانیوم ماده تشکیل دهنده بسیاری از اجسام اطراف ما مانند سنگ‌ها و خاک است. بنا بر آمارگیری جهانی معادن شناخته شده جهان در حال حاضر برای تامین بیش از ۷۰ سال انرژی الکتریکی جهان کافی هستند. بهای میانگین اورانیوم در سال ۲۰۰۷، ۱۳۰ دلار آمریکا به ازای هر کیلوگرم بود. به این ترتیب ثبات تامین سوخت هسته‌ای از بسیاری از دیگر مواد معدنی بیشتر است.

مهمترین مسئله‌ای که مخالفان انرژی هسته‌ای بیان می‌دارند امنیت محیط زیستی نیروگاه هسته‌ای است زیرا با کوچکترین اشتباه، ممکن است فجایعی مانند فاجعه چرنوبیل به بار آید.

میله های سوخت

طرز کار نیروگاه اتمی

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در ‏این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ 235U عمل شکست انجام می گیرد و ‏انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم ، ناپایداری در هسته به وجود آمده و بعد از ‏لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دو تکه شکست و تعدادی نوترون می‌شود.

بطور متوسط تعداد نوترونها به ازای هر 100 اتم شکسته شده 247 عدد است و این نوترونها اتمهای ‏دیگر را می‌شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به ‏صورت زنجیره‌ای انجام می‌شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد. در واقع ورود ‏نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با ‏‎ Mev‎‏200 میلیون الکترون ‏ولت است.

این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات ‏است. که اگر به صورت زنجیره‌ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد. اما ‏اگر تعداد شکستها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست ، اتم بعدی ‏شکست حاصل کند شرایط یک نیروگاه اتمی بوجود می‌آید. ‏

نمونه عملی

نیروگاهی که دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت و بطور متوسط ‏‏105 گرم 235U در روز در این نیروگاه شکسته می شود و همانطور که قبلا گفته شد در اثر جذب ‏نوترون بوسیله ایزوتوپ 239U ، 238U بوجود می‌آمد که بعد از دو بار انتشار ذرات بتا (‏الکترون) به 239Pu تبدیل می‌شود که خود مانند 235U شکست پذیر است. در این عمل 70 گرم ‏پلتونیوم حاصل می‌شود.

ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترونهای موجود در نیروگاه زیاد باشند مقدار جذب به مراتب ‏بیشتر از این خواهد بود و مقدار پلتونیومهای بوجود آمده از مقدار آنهایی که شکسته می‌شوند بیشتر خواهند ‏بود. در چنین حالتی بعد از پیاده کردن میله‌های سوخت می‌توان پلتونیوم بوجود آمده را از اورانیوم و ‏فرآورده‌های شکست را به کمک واکنشهای شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

لئو زیلارد و انریکو فرمی از تیم شیکاگو

مهندس هسته‌ای چه می‌کند؟

تعدادی از مهندسان هسته‌ای در نیروگاه‌های اتمی مشغول به کار هستند در حالی که عده‌ای دیگر از تولید کنندگان تجهیزات بیمارستانی، نیروهای نظامی و سازمان‌های نظارتی هستند. مهندس هسته‌ای باید در چندین رشته مهارت کافی داشته باشد از جمله درک دقیق از فیزیک هسته‌ای، شیمی هسته‌ای، ریاضیات و مواد و علومی مشابه. اکثر مهندسان اتمی به سیستم‌های کنترل کامپیوتری (CAD) تسلط دارند و می‌توانند راکتورها و شتاب دهنده‌ها را به صورت نرم‌افزاری شبیه سازی کنند.

  • لئو زیلارد محقق پروژه‌ی منهتن که در ساخت اولین راکتور هسته‌ای کمک کرده است

  • انریکو فرمی کسی که اولین واکنش زنجیره‌ای را به دست آورد

  • ارنست لارنس مخترع سیکلوترون، نوعی شتاب دهنده‌ی ذرات

  • رابرت اویهنمایر رهبر تیم ساخت اولین بمب اتمی

  • والتر زین سوپروایزر در ساخت و راه اندازی اولین راکتور تجربی

  • ادوراد تلر از توسعه دهندگان بمب هیدروژنی ایالات متحده

  • آندره ساخاروف توسعه دهنده‌ی بمب هیدورژنی برای اتحاد جماهیر شوروری

چرخه نیروگاه هسته ای

چرخه ی سوخت هسته ای

شکافت هسته‌ای صورت گرفته در یک رآکتور فقط بخشی از یک چرخه هسته‌ای است. این چرخه از معادن شروع می‌شود. اورانیوم استخراج شده از معدن معمولاً فرمی پایدار و فشرده مانند کیک زرد دارد. این اورانیوم معدنی به تأسیسات فرآوری فرستاده می‌شود و در آنجا کیک زرد به هگزافلوراید اورانیوم (که پس از غنی سازی به عنوان سوخت رآکتورها مورد استفاده قرار می‌گیرد) تبدیل می‌گردد. در این مرحله درجه غنی‌سازی اورانیوم یعنی درصد اورانیوم-۲۳۵ در حدود ۰٫۷٪ است.

222

در صورت نیاز بسته به نوع سوخت نیروگاه (درصد غنی سازی لازم برای سوخت نیروگاه) اورانیوم غنی سازی شده و سپس از آن برای تولید میل‌های سوختی مورد استفاده در نیروگاه (شکل میله‌ها در نیروگاه‌های مختلف متفاوت است) استفاده می‌کنند. عمر هر میل تقریباً سه سال است به طوری که حدود ۳٪ از اورانیوم موجود در آن مورد مصرف قرار گیرد. پس از گذشت عمر اورانیوم، آن را به حوضچه سوخت مصرف شده می‌برند.

شمای درونی

اورانیوم باید حداقل ۵ سال در این حوضچه‌ها باقی بماند تا ایزوتوپهای به وجود آمده در اثر شکافت هسته‌ای از آن جدا شوند. پس از گذشت این زمان اورانیوم را در بشکه‌های خشک انبار می‌کنند و یا اینکه دوباره آن را به چرخه سوخت باز می‌گردانند.

مسائل اقتصادی نیروگاه

یکی از مسائل نیروگاه هسته‌ای هزینه ساخت آن است که شامل هزینه ساخت رآکتور، هزینه مسائل امنیتی، هزینه ساخت مراکز معدنی، هزینه ساخت مراکز تبدیل مواد خام به سوخت هسته‌ای، هزینه ساخت مراکز بازپروری هسته‌ای و انبارهای هسته‌ای برای دفن ضایعات هسته‌ای است. هر نیروگاه هسته‌ای به‌طور متوسط ۱۰ تا ۱۵ میلیارد دلار هزینه دارد.

خرج تولید الکتریسیته با نیروی هسته‌ای در سال ۲۰۰۷ حدود ۰٫۰۱۷۶ دلار برای هر کیلووات ساعت بود، در صورتیکه این مقدار برای ذغال سنگ، گاز طبیعی، و نفت بترتیب ۰٫۰۲۴۷ دلار، ۰٫۰۶۷۸ دلار، و ۰٫۱۰۲۶ دلار بود

حوادث تلخ

حادثه تری مایل آیلند (۱۹۷۹)

در سال ۱۹۷۹ بخشی از هسته اصلی واحد ۲ در نیروگاه تری مایل آیلند در ایالت پنسیلوانیا در آمریکا ذوب شد که باعث نشت ۳ میلیون کوری گاز رادیواکتیو به بیرون از نیروگاه گردید در پی این حادثه حدود ۱۴۰٬۰۰۰ نفر از اهالی منطقه خانه‌های خود را ترک کردند. پس از حادثه تری مایلی آیلند، ساخت نیروگاه‌های هسته‌ای برای مدتی در آمریکا متوقف شد

نیروگاه تری مایل آیلند (۱۹۷۹)

نیروگاه تری مایل آیلند (۱۹۷۹)

حادثه فوکوشیما (۲۰۱۱)

حادثه نیروگاه فوکوشیما داییچی، در ۱۱ مارس ۲۰۱۱ و در پی زلزله ۹٬۰ ریشتری و سونامی پیامد آن در ژاپن رخ داد. طی این حادثه از ۶ نیروگاه BWR فوکوشیما داییچی ۳ نیروگاه که در حال کار بودند در اثر قطع برق شبکه و از کار افتادن دیزل های اضطراری آسیب جدی دیده و دچار ذوب قلب شدند. همچنین استخر سوخت های مصرف شده رآکتور شماره ۴ نیز با قطع خنک کاری و آسیب سوخت ها مواجه شد. انفجار هیدروژن در واحد های شماره ۱ و ۳ باعث آسیب به ساختمان رآکتور و امکان نشت مواد رادیواکتیو به خارج از آن شد. این اولین حادثه مخرب هسته ای در دنیاست که در آن ۳ رآکتور آسیب جدی می بینند. مقادیری مواد رادیواکتیو به اقیانوس و هوا آزاد شده است و تخمین زده می شود مقدار مواد رادیواکتیو وارد شده به محیط حدود ۱۰ درصد حادثه چرنوبیل خواهد بود.

حادثه فوکوشیما

حادثه فوکوشیما (۲۰۱۱)

نیروگاه هسته ای

پیشرفت

با راه‌اندازی نخستین نیروگاه‌های هسته‌ای، بهره برداری از این نیروگاه‌ها شتاب گرفت به طوری که استفاده از برق هسته‌ای از کمتر از ۱ گیگاوات در دهه ۱۹۶۰ به بیش از ۱۰۰ گیگاوات در دهه ۱۹۷۰ و نزدیک به ۳۰۰ گیگاوات در اواخر دهه ۱۹۸۰ رسید. البته در اواخر دهه ۱۹۸۰ از شتاب رشد استفاده از برق هسته‌ای به شدت کاسته شد و به این ترتیب به حدود ۳۶۶ گیگاوات در سال ۲۰۰۵ رسید که بیشترین گسترش پس از دهه ۱۹۸۰ مربوط به جمهوری خلق چین است. باید به این نکته نیز اشاره کرد که بیش از دو سوم از طرح‌های مربوط به احداث نیروگاه هسته‌ای که شروع اجرای آن‌ها پس از ۱۹۷۰ بود، لغو شدند.

در طول دهه‌های ۱۹۷۰ و ۱۹۸۰ کاهش قیمت سوخت‌های فسیلی و افزایش قیمت ساخت یک نیروگاه هسته‌ای از تمایل دولت‌ها برای ساخت نیروگاه هسته‌ای به شدت کاست. البته بحران سوخت ۱۹۷۳ باعث شد تا کشورهایی مانند فرانسه و ژاپن که از منابع نفت زیادی برخوردار نیستند به فکر ساخت نیروگاه‌های هسته‌ای بیشتری بیفتند به طوری که این دو کشور به ترتیب ۸۰٪ و ۳۰٪ از انرژی الکتریکی حال حاضر خود را از این منابع تامین می‌کنند.

در سی سال انتهایی قرن بیستم ترس از رخدادهای خطرناک هسته‌ای مانند فاجعه چرنوبیل در ۱۹۸۶، مشکلات مربوط به دفع زباله‌های هسته‌ای، بیماری‌های ناشی از تشعشع هسته‌ای و… باعث به وجود آمدن جنبش‌هایی برای مقابله با توسعه نیروگاه‌های هسته‌ای شد و این خود از دلایل کاهش توسعه نیروگاه‌های هسته‌ای در بسیاری از کشورها بود.

آینده

تا سال ۲۰۰۷ آخرین رآکتور هسته‌ای مورد بهره‌برداری قرار گرفته در ایالات متحده رآکتور Watts Bar ۱ در تنسی بود که در ۱۹۹۶ به شبکه متصل شد و این مدرک محکمی بر موفقیت تلاش‌های ضد گسترش نیروگاه‌های هسته‌ای است. با این حال تلاش‌ها در برابر گسترش نیروگاه‌های هسته‌ای تنها در برخی کشورهای اروپایی، فیلیپین، نیوزیلند و ایالات متحده موفق بوده‌است و در عین حال در این کشورها نیز این جنبش‌ها نتوانستند پژوهش های هسته‌ای را متوقف کنند و پژوهش های مربوط به انرژی هسته‌ای کماکان ادامه دارد. برخی کارشناسان پیش‌بینی می‌کنند که نیاز روز افزون به منابع انرژی، افزایش قیمت سوخت و بحران افزایش دمای زمین در اثر استفاده از سوخت‌های فسیلی باعث شود که بقیه کشورها نیز به سوی استفاده از نیروگاه‌های هسته‌ای روی آورند و همچنین باید یادآوری کرد که با پیشرفت فناوری هسته‌ای، امروزه امکان بروز فجایع هسته‌ای بسیار کمتر شده‌است. اتحادیه جهانی هسته‌ای پیش بینی می کند که در سال ۲۰۱۵ به طور متوسط هر ۵ روز یک‌بار یک نیروگاه هسته‌ای در جهان افتتاح خواهد شد.

با تمام مخالفت‌ها، بسیاری از کشورها در گسترش نیروگاه‌های هسته‌ای ثابت قدم بوده‌اند از جمله این کشورها می‌توان به ژاپن، چین، و هند اشاره کرد. در بسیاری از کشورهای دیگر جهان نیز طرح‌های وسیعی برای گسترش استفاده از انرژی هسته‌ای در حال تدوین است.

 

ساختمان اتم:

هر اتم از سه قسمت نسبتا سنگين تشكيل شده است. از بارهاي منفي سبكتر به نام الكترون كه در مداری متفاوت ودراطراف هسته قرار دارند و تعدادي در درون هسته که از ذرات به نام نوترون كه از نظر الكتريكي خنثي و پروتون داراي بار مثبت مي باشد تشکیل شده است بارالكتريكي پروتون هم اندازه بار الكتريكي الكترون است اما بار مخالف آن مي باشد یعنی تعداد الكترونها در مدارشان با تعداد پروتونها برابر مي باشد.وبه مجموع نوترون ها و پروتون ها که در درون هسته قرار دارند نوکلئون می گویند.

به تعداد پروتون ها عدد اتمي یک عنصر و به تعداد کل پروتونهاو نوترون های یک اتم عدد جرمي گفته مي شوند برای مثال در(16^D8) عدد8 (عدداتمی)وعدد16(عددجرمی)می باشد.يك اتم ميتواند با از دست دادن ويا گرفتن بعضي ازذرات به اتم ديگر تبديل شود. amu واحدجرم اتم است كه تقريبا برابر با 1.66*10^(-27) kg مي باشند

ايزوتوپ :به عناصری که داراي عدد اتمي يكسان اما عدد جرمي متفاوت باشند گفته مي شوند

برای مثال ایزوتوپ ها آب:)1=1H^ هیدرژن بدون نوترون یا همان آب سبک است=1H^2)( هیدرژن با یک نوترون یا همان آب سنگین است که به آن دوتریوم نیز می گویند) (3^H1= هیدرژن با دو نوترون یا همان آب خیلی سنگین است که به آن تری تیوم نیز می گویند).

برای مثال ایزوتوپ ها اورانیوم:=92U^238) اورانیوم طبیعی) =92U^235) در اورانیوم طبیعی یافت مي شوند) (=92U^234 در اورانیوم طبیعی یافت مي شوند) (=92U^234 عنصر ناپایداری است)

طبق قانون فیزیک بارهای مثبت یکدیگر را باید دفع کنند اما در داخل هسته یک اتم با وجود اینکه بارها مثبت در کنار هم قرار گرفته اند یکدیگر را دفع نمی کنند به نیرویی که این بارها را در کنار هم نگه داشته است نیروی یا انرژی هسته ای گفته می شود و اين انرژی با استفاده از رابطه2^ E=MCيعنی رابطه جرم و انرژی که آلبرت اينشتين نخستين بار آنرا کشف کرد قابل محاسبه است. که در فرمول بالا ( c)سرعت نور و (M)جرم هسته می باشد.

 

شکافت هسته ای(تقطیع)

شكافتن ميتواند بوسيله نوترون انجام شود كه از نظر الكتريكي خنثي مي باشد و مي تواند با برخود کردن به هسته هايی با بار الكتريكي مثبت رادر سرعت هاي بالا ، متوسط و پايين بدون آنكه دفع شود ان را بشکاف. شكافت هسته اي مي تواند بوسيله ذرات ديگر نيز انجام شود اما نوترون تنها ذره اي است كه باعث تند شدن واكنش مي شود زيرا

شکافت هسته ای

به ازاي هر نوتروني كه در يك شكافت جذب مي شود ، دو يا سه نوترون آزاد مي شود. اين باعث مي شود كه واكنش ادامه داشته باشد. فقط چند ايوتوپ U233,PU239,U235 رايجترين ايزوتوپهايي هست

شکافت هسته ای 2

 

زمانی که نوترون به اولین هسته اورانیوم برخورد کند هسته به دو قسمت شکسته می شود. مقادیر زیادی نیز انرژی آزاد می گردد در حدود (200Mev)(مگا الکترون ولت). این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است.به عنوان مثال نیروگاهی که دارای 10 تن اورانیوم طبیعی است قدرتی معادل با 100 مگاوات خواهد داشت.اما مسئله مهمتر این است که نتیجه شکستن هسته ورانیوم 235 آزادی دو نوترون است که می تواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد.این چهار نوترون نیز چهار هسته اورانیوم 235 را می شکند. چهار هسته شکسته شده تولید هشت نوترون می کنند که قادر به شکستن همین تعداد هسته اورانیوم می باشند. سپس شکست هسته ای و آزاد شدن نوترون ها بصورت زنجیروار به سرعت تکثیر و توسعه می یابد. در هر دوره تعداد نوترونها دو برابر می شود در یک لحظه واکنش زنجیره ای خود بخودی شکست هسته ا ی را شروع می کند. در واکنش های کنترل شده تعدادشکست در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته می شود. برای بدست آوردن بالاترين بازدهی در فرايند زنجيره ای شکافت هسته بايد از اورانيوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته ميشود. اما بدليل “نيمه عمر” کوتاه اورانيوم ۲۳۵ و فروپاشی سريع آن، اين ايزوتوپ در طبيعت بسيار نادر است بطوری که از هر ۱۰۰۰ اتم اورانيوم موجود در طبيعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگين تر U۲۳۸ است.

 

اشعه هایی که در اثر برخورد نوترون به هسته ساطح میشوند:
شامل ذره آلفا ، ذره بتا و اشعه گاما است.

خواص ذره آلفا :
جنس ذره آلفا مانند هسته اتم هلیوم است که از دو نوترون و دو پروتون تشکیل یافته است. جرم آن حدود 4 برابر جرم پروتون و بار الکتریکی آن 2+ و علامت اختصاری آن 4,2He است. قابلیت نفوذ ذره آلفا بسیار کم است.

خواص ذره بتا:
جنس ذره بتا منفی واز جنس الکترون می‌باشد، بار الکتریکی آن 1- و علامت آن بتای منفی است. برد ذره بتا در هوا در حدود چند سانتیمتر تا حدود یک متر است. قدرت نفوذ ذره بتا بطور متوسط 100 برابر بیشتر از ذره آلفا است.

خواص اشعه گاما :

جنس اشعه گاما از جنس امواج الکترومغناطیسی می‌باشد، یعنی از جنس نور است. سرعت آن برابر سرعت نور ، بار الکتریکی آن صفراست .قدرت نفوذ این اشعه به مراتب بیشتر از ذرات بتا و آلفا است.

 

اورانیوم:

میزان اورانیوم موجود در پوسته زمین نسبتاً‌ زیاد است به طوری که با منابع فلزاتی همچون قلع و ژرمانیوم برابری می‌کند و تقریباً ۳۵ برابر میزان نقره موجود در پوسته زمین است. اورانیوم ماده تشکیل دهنده بسیاری از اجسام اطراف ما مانند سنگ‌ها و خاک است. طبق آمارگیری جهانی معادن شناخته شده جهان در حال حاضر برای تامین بیش از ۷۰ سال انرژی الکتریکی جهان کافی هستند. اورانیوم طبیعی (که بشکل اکسید اورانیوم است) شامل3/99% از ایزوتوپ اورانیوم 238 و7/0% اورانیوم 235می باشد.

غنی سازی اورانیم:

منظور از غنی شدن یا غنی سازی افزایش ایزوتوپ طبیعی اورانیم-235 از 7/0 درصد به 4-5/3 درصد است. بطوربسیار خلاصه غنی سازی عبارت است از انجام عملی که بواسطه آن مقدار اورانیوم 235 بیشتر شود و مقدار اورانیوم 238 کمتر. که پس از جمع آوری اورانیوم 238 ,آن را زباله اتمی می نامند.

 

غنی سازی اورانیوم

 روش غنی سازی اورانیوم:

روش سانتریفیوژ گازی :سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده می‌شود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در می‌آورد و مواد متناسب با وزنی که دارند از محور فاصله می‌گیرند. در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده می‌گردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است. غنی‌سازی اورانیوم به روش سانتریفوژهزینه کمتری را شامل شده و اقتصادی‌تر باشد.

 

راکتور هسته ای

راکتور هسته ای:

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و بدنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.
راکتورها در اصل سیستمهایی هستند که واکنش های هسته ای مثل شکافت هسته‌ای در آنها صورت می گیرد. و انرژی تولیدي در آنها تحت کنترل در می آید. به عنوان مثال خورشید یک راکتور هسته ای طبیعی است که در آن عناصر سبک هسته ای به هم جوش می خورند (همجوشی هسته ای) و تولید انرژی می کنند.

راکتورهای هسته برای اهداف فراوانی طراحی و ساخته می شوند که بعضی از آنها عبارتند از:

– راکتورهای تولید حرارت و برق- راکتورهای تکثیر- راکتورهای تحقیقاتی – راکتورهای تولید پلوتونیم -راکتورهای اختصاصی برای مقاصدی همچون ساخت زیردریایی، فضا پیما، آب شیرین کن و…

یک راکتور هسته ای به طور کلی از قسمت های زیر تشکیل شده است:

  1. مجموعه های سوخت 2.کند کننده ها 3. خنک کننده ها 4. سیستم های ایمنی 5.میله های کنترل 6. حفاظ های مختلف

1-مجموعه های سوخت:

سوخت راکتور در چندین مجموعه سوخت و هر مجموعه متشکل از چندین میله سوخت و هر میله شامل تعداد معینی از قرص ها یا حبه های مواد شکافت پذیر هسته ای مثل اورانیم و یا در بعضی موارد پلوتونیم می باشد. سوخت راکتور مخصوصاً راکتورهای قدرت به طور اصولی یا از عناصری شامل اتم های قابل شکافت تامین می شوند و یا از اتم های ایزوتوپ عناصری که قابلیت تبدیل به اتم های قابل شکافت را دارند.سوخت راکتورها معمولا به صورت میله- ورقه-گلوله ویا شبکه ای می باشد

سوخت راکتورها ممکن است به یکی از سه روش زیر عمل گردد:

  • یکبار استفاده از اورانیم و ارسال سوخت مصرف شده به انبار موقت و سپس دفن همیشگی آن

  • استفاده چندباره از اورانیم و برقراری سیکل اورانیم-پلوتونیم با اعمال عملیات باز فرآوری روی آن

  • استفاده از سیکل اورانیم-توریم به این معنی که توریم 232 ابتدا تبدیل به اورانیم 233 می شود و سپس این اورانیم به عنوان سوخت در راکتورها مورد استفاه قرار می گیرد.

2- کند کننده ها:

کند کننده ماده ای است که برای کند کردن نوترون های سریع است تا انرژی های حرارتی در راکتورهای هسته ای مورد استفاده قرار می گیرند. گاهی اوقات همین کندکننده ها عمل سرد کنندگی راکتور را هم انجام می دهد. موادی که می توانند به عنوان کننده مورد استفاده قرارگیرند عبارتند از: آب، آب سنگین، گرافیت و گاهی اوقات هم بریلیوم آب به دلیل داشتن هیدروژن که عنصری سبک است و نیز فراوانی و ارزانی آن مورد استفاده قرار می گیرد. به طور کلی هرچه ماده کندکننده دارای قابلیت کندکنندگی بهتری برای نوترون ها باشد درجه کمتری از سوخت غنی شده مورد نیاز خواهد بود.

3-خنک کننده ها:

خنک کننده برای انتقال حرارت از میله های سوخت به طور مستقیم مورد استفاده قرار می گیرد. این فقط در صورتی است که خنک کننده نقش کند کننده هم داشته باشد.اکثراً آب به عنوان سرد کننده مورد استفاده قرار می گیرد. گاهی اوقات آب سنگین، فلزات مایع(سدیم و پتاسیم) یا حتی گازها(دی اکسیدکربن) هم ممکن است مورد استفاده واقع شوند. امروزه در اکثر راکتورهای تجاری آب به عنوان سردکننده مورد استفاده قرار می گیرد. در اینصورت آب علاوه بر نقش سرد کنندگی وظیفه کند کنندگی را نیز انجام می دهد.

4-سیستم های ایمنی در راکتور:

وظایف دستگاه ها و سیستم های کنترل(I&C) در راکتورهای هسته ای شامل اندازه گیری، کنترل، تنظیم، چک کردن و حفاظت است.سیستم دستگاهی و کنترل ممکن است به دوبخش ایمنی و اپراتوری یا کارگردانی تقسیم شوند. حفاظت راکتور و محیط زیست به عهده سیستم های ایمنی گذاشته شده است. این سیستم ها غالبا در مواقع ضروری کارمی کنند و در دوران بهره برداری و خارج از وضعیت اضطراری اکثرا غیرفعال هستند.

5-میله های کنترل:

میله های کنترل برای تنظیم توزیع قدرت در راکتور در زمان اپراتوری مورد استفاده قرار می گیرند. مهمترین وظیفه میله های کنترل که بین میله های سوخت قرار می گیرند، برای خاموش کردن یا متوقف کردن فرآیند شکافت هسته ای در زمان هایی که لازم است،میله هارا تا انتها داخل راکتور می برند.میله های کنترل از موادی ساخته شده اند که خیلی سریع با جذب نوترون ها واکنش های هسته ای را متوقف می کنند. موادی که به این منظور استفاده می شوند عبارتند از بور نقره، ایندیم، کادمیم و هافنیوم. میله های کنترل به داخل وخارج از میله های سوخت حرکت کرده و نرخ واکنش هسته ای را تنظیم می نمایند.

 

6-حفاظت راکتور

وظیفه سیستم حفاظت از راکتور اطمینان از آشکارسازی تمام حوادث پیش بینی شده در طراحی و اعتماد از امکان انجام عملیات حفاظتی می باشد. این برنامه و تمهیدات باید اطمینان دهد راکتور همیشه بطور ایمن کار می کند. در تست های دوره ای با دستگاه های مخصوص تست کردن انجام می شوند. قصورهای آشکار و نهان در کانال های مربوطه اعلام می شوند.نوع دیگر حفاظت با نام حفاظت رادیولوژیکی و کنترل پرتوگیری وجود دارد که وظیفه آن عبارتست از کاهش پرتوگیری و آلودگی داخل راکتورها و محیط زیست در کمترین حد ممکن.

انواع رآکتورهای قدرت
1- رآکتور آب تحت فشار( PWR) 2- رآکتور آب جوشان(BWR) 3-رآکتور پیشرفته با خنک کنندی گازی (AGR) 4- رآکتور D2G 5– راکتور با آب سنگین CANDU6- راکتور همجوشی هسته ای (FUSION)

 

1-رآکتور آب تحت فشار، PWR:
رآکتور PWR یکی از رایج ترین راکتورهای هسته ای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده می‌کند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده می‌کند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش می‌آید، از این دوچرخه خنک ساز اولیه را به گونه ای طراحی می‌کنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده می‌کند. دراین چرخه آب جوش می‌آید و بخار داغ تشکیل می‌شود، بخار داغ یک توربین بخار را می‌چرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید می‌کند.PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایج ترین نوع رآکتورهای هسته ای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هسته ای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار می‌گیرند.

چرخه هسته ای

 

2-رآکتور آب جوشان، BWR
در رآکتور آب جوشان، از آب سبک استفاده می‌شود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می‌آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو می‌رسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می‌آید. بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن (برای جذب هر گونه قطرات آب داغ) عبور می‌کند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب می‌شوند

در حالت کلی سه مکانیسم برای کنترل BWR وجود دارد: الف- استفاده از میله های کنترل ب- تغییر جریان آب درون راکتور ج- سیستم کنترلی اسید بوریک ( بورون )

الف- بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور می‌شود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس می‌دهد.

ب- تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار می‌گیرد که راکتور بین 70 تا صد درصد توان خود کار می‌کند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج می‌شوند و آب درون قلب رآکتور بیشتر می‌شود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب‌ها بیشتر در رآکتور باقی می‌مانند، سطح آب کاهش می‌یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می‌یابد و در نهایت توان رآکتور کاهش می‌یابد.

ج-سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق می‌شود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب می‌شود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد و هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است.

3-رآکتور پیشرفته با خنک کنندی گازی (GCR)

در راکتور های GCR گرافیت به عنوان کند کننده و دی اکسید کربن یا گاز هلیوم به عنوان خنک کننده در مدار اول نقش انتقال حرارت را بعهده دارد.این حرارت به مدار بعدی که آب است منتقل و بخار حاصله توربین را به حرکت در می آورد.ویا گاز به حدی داغ میشود که خود مستقیما توربین را به حرکت در می آورد .راکتور های AGCR  نسل دوم  راکتور های خنک شونده با گاز هستند.در این دسته از راکتور ها هم گرافیت به عنوان کند کننده و دی اکسید کربن به عنوان ماده خنک کننده مورد استفاده قرار گرفته است. سوخت این راکتور ها، قرص های اکسید اورانیم که تا 5/3_5/2 درصد غنی شده و در غلاف های استیل زنگ نزن قرار داده شده اند.

4-رآکتور D2G
رآکتور هسته ای D2G را می‌توان در تمام ناوهای دریایی ایالات متحده می‌توان پیدا کرد.
این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است.در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره می‌رسد. اگر یک رآکتور فعال باشد و توربین‌ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین‌ها جدا باشند، سرعت فقط 15 گره خواهد بود.

5– راکتور با آب سنگین CANDU

راکتور های فوق از نوع آب سنگین تحت فشار است که با سوخت اورانیم طبیعی کار می کند.نام دیگر این راکتور ها به  CANDU موسوم است.در راکتور های “کندو” از اورانیم طبیعی به عنوان سوخت و از آب سنگین به منظور کند کننده و خنک کننده راکتور (کند کننده و خنک کننده هر یک دارای سیستم جدا از هم می با شد)استفاده می شود. از آنجاییکه این راکتور نیز توانایی جا دادن صدها مجتمع سوخت در لوله ها یا کانال های تحت فشار خود را در قلب راکتور دارد،لذا عمل سوخت گذاری راکتور در حال کار با تمام ظرفیت قابل اجرا است. راکتورهای CANDU قابلیت دارند تا از اورانیوم غنی‌نشده استفاده کنند و دلیل این قابلیت استفاده آب سنگین به جای آب سبک برای تعدیل سازی و خنک کنندگی است چراکه آب سنگین مانند آب سبک نوترون‌ها را جذب نمی‌کند.

 

6- راکتور همجوشی هسته ای (FUSION)

همجوشی هسته ای یک منبع انرژی پتاسیل است. که آلودگی آن نسبتاً کم ، تقریبا پایان ناپذیر ، ارزان قیمت و می تواند در دسترس همگان قرارگیرد. دوتریوم و تریتیوم ، ایزوتوپ های هیدروژنی مواد قابل احتراق همجوشی هسته ای راتشکیل می دهند. هسته ها درحالت آزاد همدیگر را دفع می کنند. برای اینکه همجوشی هسته ای بین دو هسته صورت گیرد، باید انرژی هسته ها نسبت به رانش کولنی به قدر کافی زیادباشد. وقتی هسته ها به حد کافی به هم نزدیک می شوند یک نیروی جاذبه ای هسته ای قوی سبب اتصال هسته ها می شود. و در این صورت انرژی آزاد شده مساوی با انرژی همبستگی هسته است.

واکنش همجوشی که درشرایط آزمایشگاهی انجام می شود و جهت تولید توان مناسب واکنش دوتریوم با تریتیوم است که از این واکنش یک اتم هلیوم ویک نوترون و به مقدار 17.6 Mev انرژی تولید می شود. ازآنجا که راکتورها ی همجوشی هسته ای سوختشان دوتریوم و ترینیوم می باشد، تحقیقات انجام شده نشان می دهد که اقیانوس های جهان و همچنین دریاچه های آب شیرین و رودخانه ها نیز در برگیرنده ی دوتریوم ، کافی هستند.

مدیریت زباله های هسته ای:
در هر هشت مگاوات ساعت انرژی الکتریکی تولید شده در نیروگاه هسته ای، 30 گرم زباله رادیواکتیو به وجود می‌آید. برای تولید همین مقدار برق با استفاده از زغال سنگ پر کیفیت، هشت هزار کیلوگرم دی اکسید کربن تولید می‌شود که در دما و فشار جو، 3 استخر المپیک را پر می‌کند.

زباله های رادیواکتیو براساس مقدار و نوع ماده رادیواکتیو به 3 گروه تقسیم می‌شوند:

الف- سطح پایین: لباس حفاظتی، لوازم، تجهیزات و فیلترهایی که حاوی مواد رادیواکتیو با عمر کوتاه هستند. این‌ها نیازی به پوشش حفاظتی ندارند و معمولاً فشرده شده یا آتش زده می‌شوند و در چاله های کم عمق دفن شده و انبار می‌شوند.

ب- سطح متوسط: رزین ها، پس مانده های شیمیایی، پوشش میله سوخت و مواد نیروگاههای برق هسته ای جزو زباله های سطح متوسط طبقه بندی می‌شوند. اینها عموما عمر کوتاهی دارند، ولی نیاز به پوشش محافظ دارند. این زباله‌ها را می‌توان درون بتون قرار داد و در مخزن زباله‌ها گذاشت.

ج- سطح بالا: همان سوخت مصرف شده راکتورها است و نیاز به پوشش حفاظتی و سردسازی دارند.

مزایا ی نیروگاه هسته ای:

1-پاکیزه بودن این روش نسبت به نیروگاهای سوخت فسیلی 2-عدم تولید گازهای گلخانه ای 3- قیمت تامین سوخت در یک نیروگاه هسته‌ای نسبت به دیگر تجهیزات موجود نسبتاً اندک است و بنابراین چند برابر شدن قیمت اورانیوم تأثیر چندانی بر روی قیمت انرژی الکتریکی تولیدی نخواهد داشت. 4-بازدهی بالا نسبت به سایر نیروگاها .

معایب نیروگاه هسته ای:1-زباله های هسته ای 2-بیماری های ناشی ازتشعشعات هسته ای 3-حوادث هسته ای(انفجار) 4-مشکلات تهیه تجهیزات ودستگاهای غنی سازی اورانیوم 5-به دلیل طولانی بودن زمان راه اندازی فقط برای برق پایه مناسب می باشد.

 

 

** ویدیو معرفی نیروگاه هسته ای همراه با زیرنویس فارسی**

 

 

1415866183_Internet_Download_Manager دانلود مستقیم فیلم نیروگاه هسته ای چیست | با حجم 60 مگابایت

1415866190_698841-icon-114-lock-128 پسورد : www.poweren.ir

گرایش مورد علاقه ام ماشین های الکتریکی، بخصوص شار محورها هست - عاشق کار با نرم افزار ماکسول هستم - به زودی ایده خودم رو که نیروگاه خانگی هست راه اندازی می کنم و تموم موفقیت های داشته و نداشتم رو مدیون کسی هستم که بدون هیچ چشم داشتی کنارم موند. و واقعا خوشحال می شم بتونم کمکتون کنم.

6 نظر

  1. جالب بود
    مرسی

    پاسخ
    • خواهش می کنم

      پاسخ
  2. آینده ی درخشانی در پیش داری … خوبه ادامه بده…

    پاسخ
    • خیلی ممنون – نظرتون لطفتون رو میرسونه

      پاسخ
  3. نه بابا اختیار دارین چه لطفی چه کشکی!!! فقط خواستیم یه چیزی بنویسیم دیگه …

    پاسخ
  4. ممنون…
    عالی بود این مطلب.
    الان به این نتیجه رسیدم مهندس های هسته ای چقدر زحمت میکشن و درس میخونن

    پاسخ

دیدگاه خود را بیان کند

آدرس پست الکترونیک شما منتشر نخواهد شد. موارد لازم علامت‌گذاری شداند *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*